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Abstract 

We show that for any constant k > 0, a matching with cardinality at least 1 - ^ times the 
maximum can be computed in NC. 

1 Introduction 

Matching is a fundamental combinatorial problem. (See [10, 15].) Furthermore, the special case 
of bipartite matching seems to be a important problem of parallel computation. For example, an 
NC algorithm for bipartite matching would imply NC algorithms for the problems of constructing 
depth-first search trees in both directed and undirected graphs. (See Aggarwal and Anderson [1] 

and Aggarwal, Anderson, and Kao [2].) 

During the last decade, parallel algorithms for the bipartite matching problem received a lot of 
attention. The best currently known deterministic algorithms for the problem are due to Goldberg, 
Plotkin, and Vaidya [6] and Goldberg, Plotkin, Shmoys, and Tardos [5]. These algorithms run 

in 0*(n2lz) and 0*(m1/2) time, respectively1. (Here n denotes the numebr of nodes and m the 

number of edges in the input graph.) 

Special cases of the bipartite matching problem are known to be in NC. Lev, Pippenger, and 
Valiant [11] gave an NC algorithm to find a perfect matching in a regular bipartite graph. Miller 
and Naor [13] gave an NC algorithm to find a perfect matching in a planar bipartite graph (if one 

exists). 

Matching was shown to be in RNC by Karp, Upfal, and Wigderson [9] (see also [14] for a simpler 

and faster algorithm). However, the general problem is not known to be in NC. 

In this paper we consider the problem of approximating maximum matchings in an arbitrary 
graph. We describe an NC algorithm that, for a constant k > 0, finds a matching with cardinality 

of at least 1 - 55+1 times tlie maximum. Our algorithm runs in O(log3n) time using 0(n2k+2) 
processors. 

2 Preliminaries 

In this section we introduce the notation and the parallel computation model. 

Let G = (V, E) be an undirected graph. Define n = \V\, m = \E\. A set of edges M C E is a 
matching if no two edges of M share a node. The cardinality of the matching is \M\. The matching 
problem is to find a matching of maximum cardinality. 

Given a matching M, we say that a node v is matched if (v, w) € M for some w € V and free 
otherwise. An augmenting path is a simple path P = VQ, VI, ..., v\ such that the endpoints v0 and vi 
are free, for odd i in [0.../] we have (v{, v;+i) G M, and for even t we have (t>,-, Vi+i) € E-M. We 

'We say that an algorithm runs in 0*(/(n)) time if it runs in 0(/(n) log*(n)) time for some constant fc. 



define the length of a path to be the number of edges on the path. Note that since the endpoints 
are free, the above definition implies that the length of an augmenting path must be odd. Given 
an augmenting path, we can augment the matching M by deleting from M the edges on the path 
that are in M, and adding all of the other edges on the path to M. This results in a matching with 
one more edge. It is a well known fact that the absence of an augmenting path implies optimally 

of the current matching. 

Our model of parallel computation is the exclusive-read, exclusive-write parallel random-access 
machine (EREW PRAM) [4]. We assume that the reader is familiar with the algorithm for parallel 

list compression [3] in the context of this model. 

3    Algorithm Description 

The main idea of the algorithm is to augment along "short" augmenting paths until all augmenting 
paths are "long". Lemma 4.2 of the next section shows that if a matching does not admit a short 
augmenting path, then its cardinality is close to the optimum. 

The input to our algorithm is a graph G = (V, E) and a positive integer k, and its output is 
a matching M of G which admits no augmenting paths of length 2k - 1 or less. The algorithm 
makes Jfc iterations; at iteration z, it finds a maximal set of node-disjoint augmenting paths of length 
2z - 1 and augments along these paths. We denote the matching maintained by the algorithm by 

M. Initially M = 0. 

The z'-th iteration works as follows. First, the algorithm constructs a graph A = (VA, EA) with 
nodes in VA corresponding to augmenting paths of length 2i - 1. A pair of nodes is connected by 
an edge if the corresponding paths share a node. Next, the algorithm finds a maximal independent 
set in A, and augments the current matching in G along the paths corresponding to the chosen 

nodes. 
Observe that a maximal independent set of nodes in A corresponds to a maximal set of aug- 

menting paths of length 2t - 1 in G\ since the nodes are independent, the augmenting paths are 
disjoint, and no conflict will arise when the augmentations are performed in parallel. 

It remains to describe how to construct the graph A. Now, a path is uniquely defined by the 
ordered sequence of nodes it connects. To generate all paths of length 2z - 1, we could consider all 
sequences of 2z nodes, testing the existence of the necessary connecting edges. This would generate 
0(n2«-i) paths. However, we are only interested in those sequences, JT, which form augmenting 
paths. On an augmenting path, every node is matched except for the endpoints of the path. 

Rather than considering all sequences of 2z nodes, we need only choose a sequence of z - 1 
edges from the matching, then choose two unmatched nodes for the endpoints. Let the sequence of 
edges be * = (v2,v3),(v4,v5),...,(v2i.2,v2i-i), with the two endpoints t* and v2i. The sequence 

corresponds to the path with the edges (t>i,v2),(v3,v4),...(v2i-i,v2i) added to the ones from the 
sequence. Observe that this generates all sequences corresponding to augmenting paths of length 



2i, yet it only generates 0(ra,+1) different sequences. 

We construct all sequences TT of i - 1 edges from M and two endpoints as described above, 
and assign i processors to each sequence. We then test the existence of edges (t>2j-i,t>2j) in E for 
j = 1.. .i. Since the sequence of edges was selected from M, and the edges being tested all share 
at least one node with an edge from the sequence, the tested edges cannot be in M. Therefore, if 
the edges are all in E, the sequence corresponds to an augmenting path. Using i processors per 
path, the construction takes O(log n) time. Using list compression [3] to eliminate the sequences 

which do not form augmenting paths, we then construct VA in O(logn) time. 

To determine for X,Y € VA if the edge (X,Y) should be in EA, we need to check if their 
corresponding paths share any nodes. Using i processors for each pair of paths, we can test this in 
O(logn) time. 

4    Correctness and Analysis 

First we prove that the algorithm is correct. The following lemma of Hopcroft and Karp implies 
that there are no augmenting paths of length 2i - 1 or less after iteration i. 

Lemma 4.1 [8] if a matching is augmented along a maximal set of shortest augmenting paths, then 

the shortest augmenting path length increases. 

The next lemma is the heart of the correctness proof of our algorithm. Intuitively, the lemma 
states that if a matching does not admit short augmenting paths, then its cardinality is close to 
optimal. 

Lemma 4.2 Suppose a matching M does not admit augmenting paths of length 2fc — 1 or less. Then 

\M\ > 4J-|M*|. 

Proof: Let M and M* denote the current and optimum matchings, respectively. Consider the 
symmetric difference between M and M*. It contains |M*| — \M\ node-disjoint augmenting paths 
with respect to M. Since each of these paths contains at least k edges of M, we have |M*| - \M\ < 

\M\/k, or 

I 

The above two lemmas imply that the algorithm is correct: 

Theorem 4.3 The matching M found by the algorithm satisfies \M\ > ^-|M*|. 

3 



Next we analyse time and processor requirements of iteration t of the algorithm. 

Lemma 4.4 On an EREW PRAM, iteration i of the algorithm runs in 0(\o^n) time using 0(tn2,+2) 
processors. 

Proof: First we consider the construction of VA. The number of sequences n generated in the 

construction of A is 0(n,+1). Since we assign t processors to each sequence, TT, we use 0(»n,+1) 
processors in the construction. 

To construct E\, we assign i processors to each pair of nodes in V4. Since the number of 

nodes in V4 is 0(ni+1), we can implement this task with 0(tn2,+2) processors. Note also that 

\EA\ = 0(n2'+2). 

As shown in the previous section, A can easily be constructed in 0(log n) time. 

The next step of the algorithm finds a maximal independent set in A. Using 0(n2,+2) processors 

(linear in the size of A), this can be done in 0(log3 n) time using the algorithm of Goldberg and 

Spencer [7]. (Luby's algorithm [12] can also be used, but its deterministic version runs in 0(log4 n) 

time.) 

The final step of every iteration is the augmentation. It is easy to see that this step can be 
completed in constant time using no additional processors.     I 

Remark: The processor bound of the above lemma can be improved slightly by balancing the 
first step of the algorithm (construction of A) with the second step (maximal independent set 

computation). We can decrease the number of processors used to construct A by a factor of log2 n. 

The resulting implementation still runs in 0(log3 n) tune, but the processor requirement is reduced 

by a factor of log2 n. 

Theorem 4.5 On an EREW PRAM, the algorithm runs in 0(fclog3n) time using 0(kn2k+2) proces- 
sors. 

Proof: Immediate from Lemma 4.4.     | 

Corollary 4.6 If A: is a constant, the algorithm runs in ^(log3 n) time using a polynomial number of 
processors. 
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